10th International
- Conference on Model and
- Data Engineering
21-23 June 2021
" Tallinn, Estonia

g

GPU-BASED ALGORITHMS FOR PROCESSING THE
K NEAREST-NEIGHBOR QUERY ON DISK-RESIDENT DATA

POLYCHRONIS VELENTZAS* , MICHAEL VASSILAKOPOULOS* AND ANTONIO CORRAL?

1 DEPT. OF ELECTRICAL & COMPUTER ENGINEERING, UNIVERSITY OF THESSALY, VOLOS, GREECE

2 DEPT. OF INFORMATICS, UNIVERSITY OF ALMERIA, SPAIN
() SPEAKER

"p¥ T GOBIERNO MINISTERIO

DE ESPANA DE ECONOMIA
Y COMPETITIVIDAD

Outline

GPU-based Algorithms for Processing the k
Nearest-Neighbor Query on Disk-resident Data

The k-NN Query

Problem and Motivation

Paper Contributions

Algorithmic Characteristics

Algorithm of the k-NN Disk Brute-Force Query
Algorithm of the k-NN Disk Plane-sweep Query
Experimental Evaluation

V V. SVaaVaeV <V o V. .V

Conclusions and Future Work

The k Nearest Neighbor Query 3

» Between two spatial datasefts _ Class A
(Query and Reference) it retrieves P4 N, ClassB
the K points of Reference with the (Czlluerv?

") ass=

smallest distance to every point
of the Query dataset

» Used in Al, Regression,
Classification

» Applications: medicine,
economy, enfertainment

Problem and Motivation 4

» The k Nearest Neighbor (kNN) query belongs fo Nearest
Neighbor searches, which have numerous modern applications,
like in GIS systems, mobile computing, clustering, outlier
detection, etc.

» There have been several attfempts fo effectively solve this query
so far (using the parallelism of GPU devices), but these attempts
do nof

» focus in large reference datasets

» maximize the ufilization of the disk resident data (using
SSD/HDD-resident reference datasets)

Paper Conftributions

» We propose and implement four new GPU-based algorithms
for the k-NN query on Disk-resident Data, suitable for Big Data
processing, using the CUDA runtime AP|

This algorithm

» Loads disk resident data and efficiently computes the k-NNs of all
query points, using partitioning

» Uses a k-NN list buffer fo avoid (expensive) distance sorting of big
datasets and to store only k candidates for each query point
(saving device memory)

» We present an extensive experimental comparison using
synthetic datasets produced by the SpiderWeb generator

Disk Brute-tforce Algorithm |

» Host loads a partition from the reference
datafile and fransfers it to the device

» Every query point is assigned to a GPU thread

» The GPU starts the k-NN calculation
simultaneously for all threads

» If the number of query points is bigger than
the total available GPU threads, then the
execution progresses whenever a block of
threads finishes the previously assigned query
points calculation

» The k-NNs are stored to the k-NN buffer
» Processing continues with the next partition

Disk Plane-sweep Algorithm |

» Host loads a partition from the reference
datafile and transfers it to the device

» The reference points partition is sorted on the x-
QXIS

» Every query point is assigned to a GPU thread

» The GPU starts the k-NN plane sweep
calculation simultaneously for all threads

» If the number of query points is bigger than the
total available GPU threads, then the execution
progresses whenever a block of threads finishes
the previously assigned query points calculation

» The k-NNs are stored to the k-NN buffer
» Processing continues with the next partition

» Every thread creates a
sweep line and sweeps dall
reference points

» The sweep-line hops every
time to the next reference
point until it approaches the
x-value of the query point

» For everyreference point
within the rectangle, we
calculate the Euclidean
distance

Disk Plane-sweep Algorithm |

Left Limit

Sweep Line

Right Limit

Buffering methods (1)
k-NN distance list buffer (KNN-DLB)

>

>

The k-NN Distance List Buffer (KNN-DLB) is an array storing all calculated
distances with size K, per thread (minimizing device memory utilization)

When the buffer is not full, we append the calculated distances

When the bufter is full, we check every newly calculated distance with the
largest one in KNN-DLB. If it is smaller, we simply replace the largest
distance with the current one (and avoid using a sorting algorithm)

The resulting buffer contains the right k-NNs, but not in an ascending order

KNN Distance List Buffer, k=10

First 10 distances are
appended to the list

Distances smaller that
the maximum distance,
replace it

Butfering methods (2) 10

max Heap +e0

Sentinel

» We are using max-Heal with sentinel

» Max Heap is a priority queue
represented by a complete binary
tree which is implemented using an
array

» The first element (after the sentinel)
stores the maximum value of the
Heap

Experimental Evaluation —
Algorithms

Experimental evaluation of 4 kNN algorithms:

1. DBF, Disk Brute-force using KNN-DLB buffer

2. DBF Heap, Disk Brute-force using max Heap buftfer
3. DPS, Plane-sweep using KNN-DLB buffer

4. DPS Heap, Plane-sweep using max Heap buffer

11

Experimental Evaluation Dato 12

Distribution Size Seed File Size Dataset usage

Bit 500M 1 16GB Reference

» SpiderWeb Dataset Bit e

2 32GB Reference
Bit 1.5G 3 48GB Reference
g enera TO r d a TO Bit 2G 4 64GB Reference
Uniform 10 5 32B Query
raussian 10K 6 320KB Query
) . : . raussian 20K 640KB Query
» Experiment distributions, taussian 30K 8 960KB Query

Left=Uniform, S I
. o Tallsslan) Ho\Y uery
Middle=Gaussian, -* *-
Right=Bif

Experimental Evaluation: setup

» Dell G5 15 laptop

» Ubuntu 20.04

» Six-core (12-thread) Intel I7 CPU
» 16GB of main memory

» 1TB SSD disk

» NVIDIA Geforce 2070 (Mobile Max-Q) GPU with 8 GB of
memory

13

Experiments:

Reference dataset scaling

I Iﬂ Iﬂ

DPS

Hea
SOOM SOOM 1G

B Presorted 172 171 181 178 346
OUnsorted 154 156 67 68 319

|H |ﬂ

DBF DPS
Heap
1G 1G

337 353 352 518
320 134 134 @ 479

DBF

lG 1.5G

DBF

Heap 15G Heap

1.5G
510
480

'l

DPS DPS

1.5G
541 = 538
198 198

2G

691
638

Heap

2G
683
640

2G

730
262

Heap
2G

729
262

14

All methods
performed better
for the unsorted
dataset

Plane-sweep
methods performed
exceptionally better
than for the
presorted dataset

Plane-sweep
methods were more
than 1.7 times faster
than Brute-force
ones, in the
unsorted dataset
experiments

Experiments: 15
Query dataset scaling

» All the methods
performed better
with the unsorted
dataset

» Plane-sweep
methods
performed once
again
exceptionally
better when using
the presorted

dataset
. IH IH L. L IH IH I I I » Plane-sweep

osr | DBF | ppc | DPS DBF | . | DPS DBF DPS DBF DPS DBF methods were
10K | 1eap 4oy Heap Heap ' g Heap 30|< 30|< 4OK 40|< 50K more fhan 7 fo 15
10K 10K 20K 20K 30|< 30|< 40|< 4OI(50|< times faster than
W Presorted 585 618 512 520 1051 788 822 1265 1465 1037 1076 1592 1760 1283 1337 1882 3475 1504 1584 Brute-force ones,
COUnsorted 579 616 81 @ 81 1020 113 | 113 1221 1416 140 144 1539 1649 189 194 1846 3377 218 225 INn the unsorted
dataset

experiments

Experiments: 16
k scaling

» All the methods
performed beftter
with the unsorted
dataset

Plane-sweep
methods performed
once again
exceptionally better
than the others for
the presorted
dataset

Plane-sweep
methods were about

DBF 2 times faster than
OB | eap | DPS) ! Brute-force ones, in
k=10 - - the unsorted dataset
M Presorted 172 171 181 experimeﬂ'l's

[0 Unsorted 158 156 68

/U
0,
%
-

s Interpretation: 17
Presorted vs Unsorted

Unordered dataset - Buffer usage When .I.he reference
_— dataset is presorted each
partition contains points
that fall within a limited x-
range

When the reference
dataset is unsorted, each
partition contains points
that cover a wide x-
range

The maximum k-NN

distance (red doftted line)
Is decreasing faster when
using unordered datasets

This results to less total

Ordered Dataset Total Buffer Transfers in 23 Unordered Dataset Total Buffer Transfers in 10 bUffer Tro nSferS (] 5
out 18 out 5 unordered vs 41
total 41 total 15

& Query Point & Reference Point ® Reference Point currently o Reference Point added to = Reference Point o Processed reference point in presorTed)
currently processed added to buffer buffer in previous step removed from buffer previous steps

Conclusions 18

» Our algorithms exploit the numerous GPU cores, uftilize the device
memory as much as possible and take advantage of the speed and
storage capacity of SSDs, thus process efficiently big reference
datasets

» Plane-sweep on unsorted reference data (with either an array or a
max-Heap buffer for organizing the current k-NNs) is a clear
performance winner

Future work 19

» Development of k-NN GPU-based algorithms for big SSD resident
data which exploit the use of indexes to further speed-up processing

» Implementation of other queries (like k-closest pairs), based on
technigues utilized in this paper

