
GPU-BASED ALGORITHMS FOR PROCESSING THE 
K NEAREST-NEIGHBOR QUERY ON DISK-RESIDENT DATA

POLYCHRONIS VELENTZAS1*, MICHAEL VASSILAKOPOULOS1 AND ANTONIO CORRAL2

1 DEPT. OF ELECTRICAL & COMPUTER ENGINEERING, UNIVERSITY OF THESSALY, VOLOS, GREECE

2 DEPT. OF INFORMATICS, UNIVERSITY OF ALMERIA, SPAIN
(*) SPEAKER

10th International 

Conference on Model and 

Data Engineering 

21-23 June 2021 

Tallinn, Estonia



Outline
GPU-based Algorithms for Processing the k

Nearest-Neighbor Query on Disk-resident Data

 The k-NN Query

 Problem and Motivation

 Paper Contributions

 Algorithmic Characteristics

 Algorithm of the k-NN Disk Brute-Force Query

 Algorithm of the k-NN Disk Plane-sweep Query

 Experimental Evaluation

 Conclusions and Future Work

2



The k Nearest Neighbor Query

 Between two spatial datasets 

(Query and Reference) it retrieves 

the K points of Reference with the 

smallest distance to every point 

of the Query dataset

 Used in AI, Regression, 

Classification

 Applications: medicine, 

economy, entertainment

3



Problem and Motivation

 The k Nearest Neighbor (kNN) query belongs to Nearest 

Neighbor searches, which have numerous modern applications, 

like in GIS systems, mobile computing, clustering, outlier 

detection, etc.

 There have been several attempts to effectively solve this query 

so far (using the parallelism of GPU devices), but these attempts 

do not

 focus in large reference datasets

 maximize the utilization of the disk resident data (using 

SSD/HDD-resident reference datasets)

4



Paper Contributions

 We propose and implement four new GPU-based algorithms 

for the k-NN query on Disk-resident Data, suitable for Big Data 

processing, using the CUDA runtime API

This algorithm

 Loads disk resident data and efficiently computes the k-NNs of all 

query points, using partitioning

 Uses a k-NN list buffer to avoid (expensive) distance sorting of big 

datasets and to store only k candidates for each query point 

(saving device memory)

 We present an extensive experimental comparison using 

synthetic datasets produced by the SpiderWeb generator

5



 Host loads a partition from the reference 
datafile and transfers it to the device

 Every query point is assigned to a GPU thread

 The GPU starts the k-NN calculation 
simultaneously for all threads 

 If the number of query points is bigger than 
the total available GPU threads, then the 
execution progresses whenever a block of 
threads finishes the previously assigned query 
points calculation

 The k-NNs are stored to the k-NN buffer

 Processing continues with the next partition

Disk Brute-force Algorithm (DBF) 6

1

2

3

4



Disk Plane-sweep Algorithm (DPS) (1) 7

 Host loads a partition from the reference 
datafile and transfers it to the device

 The reference points partition is sorted on the x-
axis

 Every query point is assigned to a GPU thread

 The GPU starts the k-NN plane sweep 
calculation simultaneously for all threads 

 If the number of query points is bigger than the 
total available GPU threads, then the execution 
progresses whenever a block of threads finishes 
the previously assigned query points calculation

 The k-NNs are stored to the k-NN buffer

 Processing continues with the next partition

1

2

3

4

5



Disk Plane-sweep Algorithm (DPS) (2)

 Every thread creates a 

sweep line and sweeps all 

reference points

 The sweep-line hops every 

time to the next reference 

point until it approaches the 

x-value of the query point

 For every reference point 

within the rectangle, we 

calculate the Euclidean 

distance

8



Buffering methods (1)
k-NN distance list buffer (KNN-DLB)

 The k-NN Distance List Buffer (KNN-DLB) is an array storing all calculated 

distances with size K, per thread (minimizing device memory utilization)

 When the buffer is not full, we append the calculated distances

 When the buffer is full, we check every newly calculated distance with the 

largest one in KNN-DLB. If it is smaller, we simply replace the largest 

distance with the current one (and avoid using a sorting algorithm)

 The resulting buffer contains the right k-NNs, but not in an ascending order

9



Buffering methods (2)
max Heap

 We are using max-Heal with sentinel

 Max Heap is a priority queue 

represented by a complete binary 

tree which is implemented using an 

array

 The first element (after the sentinel) 
stores the maximum value of the 

Heap

10

+∞
Sentinel

50

19 36

17 3 1



Experimental Evaluation –

Algorithms

Experimental evaluation of 4 kNN algorithms:

1. DBF, Disk Brute-force using KNN-DLB buffer

2. DBF Heap, Disk Brute-force using max Heap buffer

3. DPS, Plane-sweep using KNN-DLB buffer

4. DPS Heap, Plane-sweep using max Heap buffer

11



Experimental Evaluation Data

 SpiderWeb Dataset 

generator data

 Experiment distributions, 

Left=Uniform, 

Middle=Gaussian, 

Right=Bit 

12



Experimental Evaluation: setup

 Dell G5 15 laptop

 Ubuntu 20.04

 Six-core (12-thread) Intel I7 CPU

 16GB of main memory 

 1TB SSD disk

 NVIDIA Geforce 2070 (Mobile Max-Q) GPU with 8GB of 

memory

13



Experiments:
Reference dataset scaling

 All methods 
performed better 
for the unsorted 
dataset

 Plane-sweep 
methods performed 
exceptionally better 
than for the 
presorted dataset

 Plane-sweep 
methods were more 
than 1.7 times faster 
than Brute-force 
ones, in the 
unsorted dataset 
experiments

14



Experiments:

Query dataset scaling
 All the methods 

performed better 
with the unsorted 
dataset

 Plane-sweep 
methods 
performed once 
again 
exceptionally 
better when using 
the presorted 
dataset

 Plane-sweep 
methods were 
more than 7 to 15 
times faster than 
Brute-force ones, 
in the unsorted 
dataset 
experiments

15



Experiments:
k scaling

 All the methods 
performed better 
with the unsorted 
dataset

 Plane-sweep 
methods performed 
once again 
exceptionally better 
than the others for 
the presorted 
dataset

 Plane-sweep 
methods were about 
2 times faster than 
Brute-force ones, in 
the unsorted dataset 
experiments

16



Results Interpretation: 
Presorted vs Unsorted

17

 When the reference 
dataset is presorted each 
partition contains points 
that fall within a limited x-
range

 When the reference 
dataset is unsorted, each 
partition contains points 
that cover a wide x-
range

 The maximum k-NN 
distance (red dotted line) 
is decreasing faster when 
using unordered datasets

 This results to less total 
buffer transfers (15 
unordered vs 41 
presorted)



Conclusions

 Our algorithms exploit the numerous GPU cores, utilize the device 

memory as much as possible and take advantage of the speed and 

storage capacity of SSDs, thus process efficiently big reference 

datasets

 Plane-sweep on unsorted reference data (with either an array or a 

max-Heap buffer for organizing the current k-NNs) is a clear 

performance winner

18



Future work

 Development of k-NN GPU-based algorithms for big SSD resident 

data which exploit the use of indexes to further speed-up processing

 Implementation of other queries (like k-closest pairs), based on 

techniques utilized in this paper

19



Thank you for your attention

20


